预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共66页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基础知识自主学习1.直接证明(1)综合法①定义:从出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.(2)分析法①定义:从出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.2.用反证法证明命题:“a,b∈N,若ab不能被5整除,则a与b都不能被5整除”时,假设的内容应为________________________.5.(2016·盐城模拟)如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为_____.题型一综合法的应用解答(1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.跟踪训练1若a,b,c是不全相等的正数,求证:题型二分析法的应用证明(1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明.题型三反证法的应用(2)设q≠1,证明:数列{an+1}不是等比数列.命题点2证明存在性问题例4已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.命题点3证明唯一性命题例5已知a≠0,证明关于x的方程ax=b有且只有一个根.应用反证法证明数学命题,一般有以下几个步骤第一步:分清命题“p⇒q”的条件和结论;第二步:作出与命题结论q相反的假设綈q;第三步:由p和綈q出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q不真,于是原结论q成立,从而间接地证明了命题p⇒q为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.跟踪训练3已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且0<x<c时,f(x)>0.典例(14分)直线y=kx+m(m≠0)与椭圆W:+y2=1相交于A、C两点,O是坐标原点.(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.2.若一元二次不等式2kx2+kx-<0对一切实数x都成立,则k的取值范围为________.5.(2016·苏州模拟)下列条件:①ab>0,②ab<0,③a>0,b>0,④a<0,b<0,其中能使成立的条件的序号是________.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是______.8.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1,在区间[-1,1]内至少证明11.(2016·苏州模拟)已知函数f(x)=ax+(a>1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.