预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10
亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第二章期权定价自从期权交易产生以来,尤其是股票期权交易产生以来,学者们一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授F.Black和M.Scholes发表《期权定价与公司负债》一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J.Cox、S.Ross和M.Rubinstein三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨。第一节二叉树与风险中性定价对期权定价的研究而言,Black-Scholes模型的提出是具有开创性意义的。然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。1979年,J.Cox、S.Ross和M.Rubinstein三人发表《期权定价:一种被简化的方法》一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树定价模型(theBinomialModel)”,是期权数值定价方法的一种。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。同时,它应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。1.1二叉树模型概述二叉树(binomialtree)是指用来描述在期权存续期内股票价格变动的可能路径。二叉树定价模型假定股票价格服从随机漫步,股票价格的波动只有向上和向下两个方向,且在树形的每一步,股票价格向上或者向下波动的概率和幅度保持不变。案例1.1现有一只股票,当前价格为10元;我们还知道3个月后该只股票的价格变化仅有两种可能性,即可能涨至12元,也可能跌到8元。那么以该只股票为标的,行权价为11元,3个月后到期的看涨期权现在的价格应该是多少呢?也就是说,我们现在要对上面这个期权进行定价。根据第一章我们学到的知识,不难得出:3个月后,如果股票上涨至12元,则该股票期权的价格应为1元,如果股票下跌至8元,则该股票期权的价格应为0元。这些可以通过下图的二叉树来表示。股票价格=10元期权价格=?股票价格=12元期权价格=1元股票价格=8元期权价格=0元图2-1现在我们来考虑建立一个无风险投资组合,这个投资组合由两部分组成:买入只该股票,同时卖出一份以该股票为标的的看涨期权,即同时持有只股票的多头头寸和一份看涨期权的空头头寸。我们假设市场上不存在套利机会,因此我们总能找到一个,使得该投资组合是无风险组合。我们接下来计算出使得该组合无风险的。当股票价格由10元上涨为12元时,组合中股票头寸的价值为12,期权头寸的价值为-1元(我们持有的是空头头寸),该组合的整体价值则为12-1;当股票价格由10元下跌至8元时,组合中股票头寸的价值为8,期权头寸的价值为0,该组合的整体价值为8。只有当该投资组合在上述两种情况下的终端价值相等时,该组合才是无风险组合。即:12-1=8=0.25因此,该无风险投资组合是由0.25只股票的多头持仓和1份看涨期权的空头持仓所构成。注意,在此我们假定了股票是无限可分割的,并且不存在佣金等交易税费。无套利均衡定价是金融工程学中对金融工具进行定价的基本思路。其基本做法是,构建两个资产组合,若令其终值(期末的价值)相等,则其现值(当前的价值)也一定相等;否则就将产生套利机会,即我们可以卖出现值较高的资产组合,买入现值较低的资产组合,并持有到期,套利者就可以获取无风险收益。在上例中,如果股票价格上涨为12元,该组合价值为12×0.25-1=2元如果股票价格下跌至8元,则该组合的价值为8×0.25=2元由于该投资组合是无风险的,因此其收益率一定等于无风险收益率。假设当前无风险收益率为4%,那么该组合的现值应为终值2元的贴现值;在此我们使用连续复利进行计算,即该组合的现值为1.98元假定期权当前的价格为,已知股票当前价格为10元,那么该交易组合的现值为10×0.25-f=2.5-f=1.98元f=0.52元因此,本例中看涨期权当前的价格应为0.52元。1.2推广——单步二叉树期权定价接下来,我们将上面例子得到的结论进行推广。假定股票的当前价格为,看涨期权当前的价格为,该期权的有效期为T;在这段时间内,股票价格或者会从上涨至,或者会从下跌至,其中u>1,0<d<1;相对应地,期权价格为或者。因此,若股票价格上涨,其涨幅为u-1;若股票价格下跌,其跌幅为1-d。如图2-2所示:图2-2与上面的例子相同,我们考虑构建一个由只股票的多头持仓和一份期权的空头持仓多组成的无风险投资组合。若股票价格上涨,在期权到期时该组合的价值为若股票价格下跌,在期权到期时该