预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10
亲,该文档总共113页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
知识点34与圆有关的地位关系一、选择题1.(2018四川泸州,10题,3分)在平面直角坐标系内,以原点为原心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3B.2C.D.【答案】D【解析】由题可知,B(-2,0),C(0,),P为直线上一点,过P作圆O的切线PA,连接AO,则在Rt△PAO中,AO=1,由勾股定理可得,要想使PA最小,要求PO最小,所以过点O作OP⊥BC于点P,此时PO=,PA=【知识点】一次函数,圆的切线,勾股定理2.(2018四川内江,7,3)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的地位关系是()A.外离B.外切C.相交D.内切【答案】C【解析】解:∵3-2<O1O2<3+2,∴⊙O1与⊙O2的地位关系是相交.故选择C.【知识点】圆与圆的地位关系3.(2018江苏无锡,8,3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的与边AB、CD分别交于点E、F.给出以下说法:(1)AC与BD的交点是的圆心;(2)AF与DE的交点是的圆心;(3)BC与相切.其中正确说法的个数是()A.0B.1C.2D.3【答案】C【思绪分析】利用圆周角定理的推理确定的圆心,进而判定(1)、(2)的正确性;连接OG,经过证明OG⊥BC阐明BC与相切.【解题过程】∵矩形ABCD中,∴∠A=∠D=90°,∴AF与DE都是的直径,AC与BD不是的直径,∴AF与DE的交点是的圆心,AC与BD的交点不是的圆心,∴(1)错误、(2)正确.连接AF、OG,则点O为AF的中点,∵G是BC的中点,∴OG是梯形FABC的中位线,∴OG∥AB,∵AB⊥BC,∴OG⊥BC,∴BC与相切.∴(3)正确.综上所述,正确结论有两个.【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定4.(2018·重庆B卷,10,4)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2B.C.D.【答案】B.【解析】如下图,连接OD,则由AD切⊙O于点D,得OD⊥AC.∵在Rt△AOD中,∠A=30°,AD=2,tanA=,∴OD=AD•,tanA=2×tan30°=2×=2.∴AO=2OD=4,AB=OA+OB=6.∵∠AOD=90°-∠A=60°,∴∠ABD=∠AOD=30°.∵BD平分∠ABC,∴∠ABC=2∠ABD=60°.∴∠C=90°=∠ADO.∴OD∥BC.∴,即.∴DC=.【知识点】圆圆的切线类似三角形5.(2018山东烟台,10,3分)如图四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延伸线上,则∠CDE的度数是()A.56°B.62°C.68°D.78°【答案】C【解析】∵点I是△ABC的内心,∴AI、CI是△ABC的角平分线,∴∠AIC=90°+∠B=124°,∴∠B=68°.∵四边形ABCD是⊙O的内接四边形,∴∠CDE=∠B=68°,故选C.【知识点】三角形内心;圆内接四边形的性质;6.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.第9题答图【答案】B.【解析】如图,设△ABC的边长为a,由正三角形的面积公式得S△ABC=,∴==,解得a=2或-2(舍),∴BC=2.∵∠BAC=60°,BO=CO,∴∠BOC=120°,则∠BCO=30°.∵OH⊥BC,∴BH=BC=1,在Rt△BOH中,BO=BH÷cos30°=,所以圆的半径r=.则OF=.如图,正六边形内接于圆,且半径为,可知∠EOF=60°,在△EOF中,OE=OF,OD⊥EF,∴∠EOD=30°.在Rt△DOE中,OD=OF·cos30°=×=1.所以边心距为1.【知识点】正多边形和圆1.(2018湖北鄂州,8,3分)如图,PA、PB是⊙O的切线,切点为A、B,AC是⊙O的直径,OP与AB相交于点D,连接BC.以下结论:①∠APB=2∠BAC;②OP∥BC;③若tanC=3,则OP=5BC;④AC2=4OD·OP.其中正确的个数为()A.4个B.3个C.2个D.1个【答案】A.【思绪分析】利用切线长定理证明Rt△APO≌Rt△BPO,再利用同角的余角相等,可证得∠AOP=∠C,得到OP∥BC,∠APB=2∠BAC,故①②正确;利用勾股定理