预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

基于数据挖掘的电视产品营销推荐数161203105350·2020的基于数据挖掘的电视产品营销推荐的的的的数据2020基于数据挖掘的电视产品营销推荐数据的电视的的视数据产的电视产品的数据挖掘电视产品推荐2018B数据视数据电视产品数据的数据基于数据的数数据视电视电视产品视基于的推荐topN电视产品推荐的营销推荐数推荐产品营销K-means的电视产品推荐视推荐数k-means2020TVproductmarketingrecommendationbasedondataminingAbstractIntoday’sbigdataera,whiletheInternetisdevelopingrapidly,theTVmediain-dustryhasalsousheredinitsowndevelopmentopportunities.Withthecontinuousgenerationofmassiveuserviewinginformationdataeveryday,usersarealsofacingalargenumberofTVproductselectionissues.Inthisregard,thisarticleusesdataminingtoachievepersonalizedrecommendationofTVproductsforusers.Thisarticleusesthedataofthe2018”TeddyCup”Bcompetitiontodothemainanalysisandresearchontheuser’sviewinginformationdataandTVproductin-formationdata.First,performdatapreprocessing,includingremovingextraneousvariables,cleaningadditionalinformation,andmergingbasedonkeyworddata.Then,countthefrequencyanddurationofusers’on-demand,anddodescriptivestatisticsanddatavisualization.Then,supplementthetypesandratingsofTVmoviesthroughcrawlers,andclassifyTVproductsaccordingtotheirtypelabel-s.Establishuserviewingpreferencemodels,analyzeuserinterestdimensions,andintroduceinterestlevels.Basedontheuser’scollaborativefilteringrecommendationalgorithm,theuser-moviematrix,user-preferencetypematrix,usercosinesimilaritymatrixareestab-lished,thetopNsimilarusersandTVproductrecommendationlistareobtained,thespecificprecisemarke