预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10
亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
函数概念教学论文函数概念教学论文是初中或高中教学中的一个重要内容,教师有专业的函数概念教学意识与技巧至关重要。函数概念教学论文【1】[摘要]函数是中学数学教学中的一个重要内容,它与生活和学习联系紧密。教师在组织高中学生学习函数内容时,一要帮助学生梳理函数概念,二要进行目标解析,三要帮学生诊断学习中遇到的问题。[关键词]初中阶段,学生已经学习过函数概念,但到了高中,函数概念发生了变化。此时,数学教师要帮学生理清概念,解析问题。一、对“函数”概念的理解在初中,学生已经学习过函数概念,建立的函数概念是:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说y是x的函数。其中x称为自变量。这个定义从运动变化的观点出发,把函数看成是变量之间的依赖关系。从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式。进入高中,学生需要建立的函数概念是:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|x∈A叫做函数的值域。这个概念与初中概念相比更具有一般性。其实,高中的函数概念与初中的函数概念本质上是一致的。不同点是表述方式不同──高中明确了集合、对应的方法;初中虽然没有明确定义域、值域这些集合,但这是客观存在的,也已经渗透了集合与对应的观点。且高中引入了抽象的符号f(x),f(x)指集合B中与x对应的那个数,当x确定时,f(x)也唯一确定。另外,初中并没有明确函数值域这个概念。函数概念的核心是“对应”,理解函数概念要注意:1.两个数集间有一种确定的对应关系f,即对于数集A中每一个x,数集B中都有唯一确定的y和它对应。2.涉及两个数集A、B,而且这两个数集都非空;这里的关键词是“每一个”“唯一确定”。也就是,对于集合A中的数,不能有的在集合B中有数与之对应,有的没有。而且,在集合B中只能有一个与之对应,不存在两个或者两个。3.函数概念中涉及的集合A、B,对应关系f是一个整体,是集合A与集合B之间的一种对应关系,应该从整体的角度来认识函数。二、目标解析1.通过丰富实例,建立函数概念的背景,使学生体会函数是描述变量之间的依赖关系的重要数学模型。能用集合与对应的语言来刻画函数,了解构成函数的三个要素。2.会判断两个函数是否为同一函数,会求一些简单函数的定义域和值域。3.通过从实例中抽象概括函数概念的活动,培养学生的抽象概括能力。教学的重点是,在研究已有函数实例(学生举出的例子)的过程中,感受在两个数集A、B之间所存在的对应关系f,进而用集合、对应的语言刻画这一关系,获得函数概念。然后再进一步理解它。三、教学问题诊断分析1.学生对函数概念中的“每一个”“唯一确定”等关键词关注不够,领会不深。教学中,可以通过反例让学生加以认识。如有学生的考试情况是这样的:集合A={1,2,3,4,5,6},B={90,93,98,92},f:每次考试成绩。这里就不能表示一个函数。因为对于集合A中的元素“4”,在集合B中就没有元素与它对应。2.忽视“数集”二字,把一般的映射关系理解为函数。如:高一(2)班的同学组成集合A,教室里的座椅组成集合B,每个学生都有唯一的一个座椅,班上还有空椅子。这能否算作一个函数的例子,为什么?3.对为什么集合B不是函数的值域不理解.让学生感受到,有时,为了研究方便或者确定一个函数的值域暂时有困难,使得B={f(x)|x∈A}更加合理。4.当函数关系具有解析式表示时,f(x)当然可以用x的解析式表示出来。学生会因此而误以为对应关系f都可以用解析式表示。可以通过所举实例的类型,引导学生,明确表示对应关系f并非解析表达式不可。但这不是本节课的重点,应该放在下一节课“函数的表示”中解决。只要注意所列举的例子不光是有解析式的即可。5.本课的难点是:对抽象符号y=f(x)的理解。可以通过具体函数让学生理解抽象的f(x)。比如函数f(x)=x2,A=x|-2≤xf(2)无定义。f(x)=x2,x∈A。最终,让学生明白,f(x)是集合B中的一个数,是与集合A中的x对应的那个数.当x取具体数字时,f(x)也是一个具体的数。函数概念教学论文【2】摘要:函数的概念及相关内容是高中和职业类教材中非常重要的部分,许多学生认为这些内容比较抽象、难懂、图像多,方法灵活多样。以致部分学生对函数知识产生恐惧感。就教学过程中学生的反应