预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10
亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
PAGE-30-浙江11市2012年中考数学试题分类解析汇编专题6:函数的图象与性质选择题1.(2012浙江杭州3分)已知抛物线与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是【】A.2B.3C.4D.5【答案】B。【考点】抛物线与x轴的交点。【分析】根据抛物线的解析式可得C(0,﹣3),再表示出抛物线与x轴的两个交点的横坐标,再根据ABC是等腰三角形分三种情况讨论,求得k的值,即可求出答案:根据题意,得C(0,﹣3).令y=0,则,解得x=﹣1或x=。设A点的坐标为(﹣1,0),则B(,0),①当AC=BC时,OA=OB=1,B点的坐标为(1,0),∴=1,k=3;②当AC=AB时,点B在点A的右面时,∵,∴AB=AC=,B点的坐标为(﹣1,0),∴;③当AC=AB时,点B在点A的左面时,B点的坐标为(,0),∴。∴能使△ABC为等腰三角形的抛物线的条数是3条。故选B。2.(2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【】A.B.C.3D.43.(2012浙江衢州3分)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是【】A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1【答案】A。【考点】二次函数图象上点的坐标特征。【分析】根据x1、x2、x3与对称轴的大小关系,判断y1、y2、y3的大小关系:∵二次函数,∴此函数的对称轴为:。∵<0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小。∴y1>y2>y3。故选A。4.(2012浙江台州4分)点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是【】A.y3<y2<y1B.y2<y3<y1C.y1<y2<y3D.y1<y3<y2【答案】D。【考点】曲线上点的坐标与方程的关系,有理数的大小比较。【分析】由点(﹣1,y1),(2,y2),(3,y3)均在函数的图象上,得y1=-6,y2=3,y3=2。根据有理数的大小关系,-6<2<3,从而y1<y3<y2。故选D。5.(2012浙江温州4分)一次函数y=-2x+4图象与y轴的交点坐标是【】A.(0,4)B.(4,0)C.(2,0)D.(0,2)【答案】A。【考点】一次函数图象上点的坐标特征。【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标:y=-2×0+4=4,则函数与y轴的交点坐标是(0,4)。故选A。6.(2012浙江义乌3分)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是【】A.①②B.①④C.②③D.③④【答案】D。【考点】二次函数的图象和性质。【分析】①∵当x>0时,利用函数图象可以得出y2>y1。∴此判断错误。②∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M。∴当x<0时,根据函数图象可以得出x值越大,M值越大。∴此判断错误。③∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;∴此判断正确。④∵使得M=1时,若y1=﹣2x2+2=1,解得:x1=,x2=﹣;若y2=2x+2=1,解得:x=﹣。由图象可得出:当x=>0,此时对应y1=M。∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),∴当﹣1<x<0,此时对应y2=M,∴M=1时,x=或x=﹣。∴此判断正确。因此正确的有:③④。故选D。二、填空题1.(2012浙江湖州4分)一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为▲【答案】x=-1。【考点】一次函数与一元