预览加载中,请您耐心等待几秒...
1/1

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1/SVM简单概念描述:(1)支持向量机(SVM,supportvectormachine)就是通过最大化支持向量到分类超平面之间的分类间隔。分类超平面就是我们想要得到的决策曲面;支持向量就是离分类超平面最近的点,而间隔即为支持向量到分类超平面的距离。(2)核函数:通常大家说核函数的作用是将数据由低维空间映射到高维空间,线性不可分变得线性可分。这句话的意思用个简单的例子来说明:比如a1*x1^2+a2*x2^2+a3*x1x2=0,此时我们令z1=x1^2,z2=x2^2,z3=x1x2,这样就由原来的二维映射到三维空间了,而此时也变得线性可分了,对应的映射函数用P来表示。而核函数的作用是在求解svm时,经常需要计算内积<p(x1),p(x2)>,但是在高维空间中计算内积往往比较复杂,有时可能出现维数灾难,此时我们就可以使用核函数来解决这个问题。如注意:(1)SVM是现成最好的分类器,这里“现成”指的是分类器不加修改即可直接使用。(2)SVM的实现方法有很多,最常用的就是序列最小最优化算法(SMO,sequentialminimaloptimization)(3)几乎所有的分类问题都可以使用SVM,但值得一提的是,SVM本身是一个二值分类器,对多类分类问题应用SVM需要对代码做一些修改。(4)支持向量机是一种分类器。之所以称为“机”是因为它会产生一个二值决策结果,即它是一种决策“机”。